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Abstract—In this paper, we propose a novel quaternion decom-
position based discriminant analysis (QDDA) method for color
face recognition. Unlike traditional approaches that handle color
face images by vector representation or by each color channel
individually, QDDA makes use of the quaternion to encode all
color channels such that we can process all these channels in
a holistic way and consider their relations simultaneously. In
order to extract more discriminant color information from the
image, a decomposition operation is performed to the quaternion
matrix. A linear discriminant analysis is finally implemented to
the obtained subcomponents for feature extraction. Experimental
results have demonstrated the effectiveness of QDDA by compar-
ing with other quaternion based methods.

I. INTRODUCTION

Over the past two decades, color face recognition has
attracted a great deal of research interest in the fields of
computer vision and pattern recognition. A large number
of approaches have been proposed in the literature. These
methods usually deal with the RGB color face image in a
lower-dimensional space [1], [2] or other color spaces [3]–[5]
for better classification results. Although encouraging results
have been achieved, these methods are usually subject to the
following limitation [6]: they are not able to simultaneously
handle all channels of the color image. That is, these methods
perform classical grayscale image processing algorithms to
each channel individually. This limitation may restrict their
performances for color face recognition.

Recently, increasing attention has been paid on color image
processing using the quaternion. Mathematically, the quater-
nion is a generalization of the 2D dimension complex number
system to a 4D dimension number system [7]. Therefore, we
can encode all channels of a color pixel by one quaternion,
which is referred to as the quaternion representation (QR) of a
color image [8]. In this way, we are able to handle all channels
of color images in a holistic way, and consider their relations
simultaneously. QR has been successfully applied to many
color image processing applications, like object recognition
[9], [10], person reidentification [11], synthetic-aperture radar
(SAR) image analysis [12], local feature extraction [13], [14],
image quality evaluation [15], and segmentation [16].

In order to address the aforementioned limitation of col-
or face recognition, some researchers developed color face
recognition algorithms making use of QR from different per-
spectives [17]–[23]. Among these methods, several classical

discriminant analysis methods, including principal component
analysis (PCA), linear discriminant analysis (LDA) and 2D
PCA, have been extended into quaternionic domain [6], [19],
[20]. Similarly, Wu proposed a quaternion-based improved
locality preserving projection (LPP) for color face recognition
[23]. These methods are finally transformed to find the eigen-
vectors and eigenvalues of a quaternion matrix, and promising
results have been achieved.

However, most of existing quaternion based discriminant
analysis schemes directly work on the quaternion matrix. The
matrix consists of all color information of the original image,
but it also contains several negative information, like the
noise or illumination variations. The features, derived from the
unwanted information, may adversely affect the performance
of a specific application. It is necessary to remove the useless
information from the quaternion matrix to gain more robust
characteristics for feature extraction.

In this paper, we propose a novel discriminant analysis
method for color face recognition using QR. Unlike existing
methods, which directly deal with the quaternion matrix,
the proposed method first decomposes the quaternion matrix
into two components. These components are parallel and
vertical to a previously given quaternion [24]. Therefore, the
proposed method is referred to as quaternion decomposition
based discriminant analysis (QDDA). By decomposing the
QR of color images by a specific direction in the color
space, different characteristics of the color information can
be extracted which may convey more discriminant features
for face recognition. After quaternion decomposition, a linear
discriminant analysis is performed to the obtained subcompo-
nents for feature extraction. Comparison results demonstrate
that the proposed QDDA outperforms other quaternion based
discriminant analysis methods in most test cases.

The remainder of the paper is organized as follows. In Sec-
tion 2 we introduce the related mathematical background about
quaternion algebra. In Section 3 we describe the proposed
QDDA algorithm in detail. In Section 4 several experiments
are carried out to evaluate QDDA. Section 5 offers our
conclusions.

II. PRELIMINARIES

A. Quaternion Algebra

The quaternion, created by Hamilton in 1843 [7], is a four-
dimensional generalization of the complex number system
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with one real part and three imaginary parts. A quaternion
q̇ ∈ H can be represented in a complex form as follows:

q̇ = q + ia+ jb+ kc, (1)

where q, a, b and c are real numbers, and {i, j, k} are complex
operators satisfying:

i2 = j2 = k2 = ijk = −1, (2)

ij = −ji = k, (3)

jk = −kj = i, (4)

ki = −ik = j. (5)

q is the real part of q̇, and ia+ jb+ kc is the imaginary part.
If q = 0, q̇ is a pure quaternion.

Several basic properties of quaternion can be similarly
derived as the complex number system. For instance, the
conjugate and modulus of q̇ are defined as follows:

q̇∗ = q − (ia+ jb+ kc), (6)

|q̇| =
√
q̇q̇∗ =

√
q̇∗q̇ =

√
q2 + a2 + b2 + c2. (7)

Note that q̇ is a unit quaternion if |q̇| = 1. More details about
quaternion algebra can be found in [7], [8].

B. Eigenvalues and Eigenvectors for Quaternion Matrices

Similar to the real matrix, the eigenequation of a quaternion
matrix Ṡ is defined as:

Ṡu̇ = λ̇u̇, (8)

where u̇ and λ̇ is the eigenvector and eigenvalue of Ṡ. Many
quaternion based discriminant analysis methods finally turn to
find the eigenvectors corresponding to the largest eigenvalues.
In order to address Eq. (8), Ṡ is first transformed into its
equivalent complex matrix, then we solve the eigenvalues and
eigenvectors of the complex matrix instead. For more details,
see [25].

III. METHODOLOGY

The proposed approach mainly consists of three steps: QR
of color images, quaternion decomposition, and quaternion
based discriminant analysis. In the following, we will detail
these steps respectively.

A. QR of Color Images

To handle the color image in quaternionic domain, the first
step is to represent it by quaternions. However, the color image
is usually described in RGB color space, which is a 3D space,
while the quaternion is a 4D number system. To remove this
mismatch between color space and the quaternionic domain,
the imaginary part of a quaternion is used to represent a color
pixel as follows [8]:

Q̇(x, y) = iR(x, y) + jG(x, y) + kB(x, y), (9)

where Q̇(x, y) is QR of the color pixel, and R(x, y), G(x, y),
and B(x, y) are the red, green, and blue components of a

TABLE I
DECOMPOSITION RESULTS OF q̇ WITH DIFFERENT DIRECTIONS.

ṗ q̇q q̇⊥
ṗ1 ri gj + bk

ṗ2
r+g
2 i + r+g

2 j r−g
2 i + g−r

2 j + bk

ṗ3
r+g+b

3 i + r+g+b
3 j + r+g+b

3 k 2r−g−b
3 i + 2g−r−b

3 j + 2b−r−g
3 k

ṗ4
r+2g+b

6 i + r+2g+b
3 j + r+2g+b

6 k 5r−2g−b
6 i + g−b−r

3 j + 5b−r−2g
6 k

(a) (b) (c)

Fig. 1. The parallel components of decomposition results for color Lena
image using different decomposition directions given in Table I respectively:
(a) ṗ2 = i+j√

2
, (b) ṗ3 = i+j+k√

3
, and (c) ṗ4 = i+2j+k√

6
.

color pixel respectively. Q̇(x, y) gives a one-to-one mapping
between the quaternionic domain and RGB color space. Any
operations to Q̇(x, y) will affect all the color channels at the
same time.

B. Quaternion Decomposition

Ell and Sangwine [24] pointed out that a pure quaternion
q̇ can be decomposed into two components which are parallel
and vertical to a given quaternion ṗ. Denoting these two
components of q̇ by q̇q and q̇⊥ respectively, we have: q̇q ‖ ṗ,
q̇⊥ ⊥ ṗ, and q̇ = q̇q + q̇⊥. They can be obtained as follows
[24]:

q̇q = 0.5 ∗ (q̇ + ṗq̇ṗ), (10)
q̇⊥ = 0.5 ∗ (q̇ − ṗq̇ṗ). (11)

In color space, different characteristics of the color pixel can
be achieved by choosing a proper decomposition direction.
Suppose that q̇ = ri + gj + bk. We consider four special
directions in the color space: ṗ1 = i, ṗ2 = i+j√

2
, ṗ3 = i+j+k√

3
,

and ṗ4 = i+2j+k√
6

. The corresponding decomposition results
of q̇ are given in Table I, and the parallel components of
color Lena image are illustrated in Fig. 1 as an example. We
can observe that the direction determined by ṗ1 can portion
the red component from all color channels. For the results
obtained by ṗ2 and ṗ3, the average values of corresponding
color channels are extracted. To ṗ4, q̇q is the weighted averages
of all color channels of q̇. Therefore, q̇q can be regarded as a
special type of “mean” value of q̇, while the remainder part q̇⊥
represents the “mean” removal results. They contain different
color information of the original color image.

C. QDDA Method

Based on the decomposition method described in Section
III-B, the QR of a color image Q̇ is decomposed into two parts:
Q̇q and Q̇⊥. Then some existing quaternion-based discriminant
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analysis approaches, such as QPCA, QLDA, and QLPP, can be
performed to the decomposition results for feature extraction.
In this work, the QLDA [6] is used in QDDA method as an
example.

Suppose that there exist totally T training samples for L
classes in the training set. Take QDDA using the vertical
component of the QR as an example. For tth training sample,
convert Q̇t⊥ into a quaternion vector q̇t⊥ by concatenating
the rows in sequence. Then calculate the generative matrix as
follows:

Ṁ⊥ =
1

L

L∑
l=1

(¯̇ql⊥
− ¯̇q⊥)(¯̇ql⊥

− ¯̇q⊥)H , (12)

where H means conjugate transpose, ¯̇ql⊥
stands for the

average value of the training samples of the lth class, and ¯̇q⊥
represents the average value of all training samples. Similar to
the discriminant analysis methods in real number domain, we
find the eigenvalues and eigenvectors of the quaternion matrix
Ṁ⊥, then select the eigenvectors that are corresponding to the
first d largest eigenvalues as the transform axes. Concatenate
these d eigenvectors together to form a transform matrix Ψ̇⊥.
The detail derivation of Ψ̇⊥ is summarized in Algorithm 1,
and the approach presented here is referred to as QDDA. The
features of q̇t⊥ are then extracted by projecting it onto Ψ̇⊥ as
follows:

ft⊥ = q̇t⊥Ψ̇⊥. (13)

We can obtain ftq , the features from q̇tq , in a similar way.

Algorithm 1 The QDDA Algorithm
Input: A set of training color images for L classes, decom-
position direction q̇0.
Output: The transform matrix Ψ̇⊥.
• Step 1: Represent the tth color image It by a quaternion

matrix Q̇t using Eq. (9);
• Step 2: Based on Eq. (11), extract Q̇t⊥ as the subcom-

ponent of Q̇t that is vertical to q̇0;
• Step 3: Convert Q̇t⊥ to its vector version q̇t⊥ , then

calculate ¯̇ql⊥
and ¯̇q⊥ which are the average values of

the lth class and of all training samples;
• Step 4: Compute the generative matrix Ṁ⊥ as in Eq. (12),

then calculate its eigenvectors and eigenvalues;
• Step 5: Concatenate the eigenvectors together which are

corresponding to the first d largest eigenvalues to form
the transform matrixes Ψ̇⊥.

IV. EXPERIMENTAL RESULTS

In this section, experiments will be conducted to evaluate the
performances of the proposed QDDA. First, we introduce the
experimental setting. Then the effects of quaternion decompo-
sition directions are studied. Finally, QDDA is compared with
other quaternion-based discriminant analysis methods.

Fig. 2. Examples of color face images in GTFB databse.

A. Experimental Setting

The normalized Georgia Tech face database (GTFB), cre-
ated by Xu [6], is selected in our experiments. It includes
color face images of 50 people, and there are 15 images for
each people. All these face images were manually labeled and
extracted from the original images. Each face image is resized
to 40 × 30. Some face images are illustrated in Fig. 2 as
examples. Images on the same row are of the same person. We
can find that there are variations of facial expressions, lighting
conditions, and pose in the images. In all tests, we apply the
first N images of each subject to form the training samples and
consider the rest images as testing samples, and the number
of transform axes is set from 4 to 50. The nearest neighbor
(NN) classifier with l2 norm is chosen here. The correct
classification rate is applied to measure the performance of
the test methods.

B. The Effects of Quaternion Decomposition Directions

In this experiment, we first study the performances of
QDDA using different decomposition directions. As afore-
mentioned, different characteristics of the color pixel can be
represented by selecting special decomposition direction. In
this work we consider following directions represented by
quaternions: µ̇ = i+j+k√

3
, q̇1 = i+j√

2
, q̇2 = i+k√

2
, and q̇3 = j+k√

2
.

µ̇ is the gray line in RGB color space, and {q̇1, q̇2, q̇3} are
the center lines in corresponding 2D color planes. Denote
QDDA on the parallel component of decomposition results
using the above directions by: QDDA{1,1,1},p, QDDA{1,1,0},p,
QDDA{1,0,1},p, and QDDA{0,1,1},p respectively. The corre-
sponding results of vertical component are represented by
QDDA{•},v .

The number of training sample N is set to 7 and 9 here.
The corresponding results are illustrated in Fig. 3, where
(a) and (b) are the results of QDDA{•},p and QDDA{•},v
with N = 7, and (c) and (d) are corresponding results of
N = 9. We can find that the performances of QDDA{•},p
and QDDA{•},v using the same decomposition direction
may quite differ. QDDA{1,1,1},p achieves worst results when
N = 7, but QDDA{1,1,1},v outperforms QDDA{1,1,0},v and
QDDA{0,1,1},v . In contrast, QDDA{1,1,0},p achieves satisfying
results, but QDDA{1,1,0},v just obtains the third best results
in all QDDA{•},v . On the whole, the accuracies obtained
by vertical component are better than those obtained by
parallel components. Among all test decomposition directions,
q̇2 = i+k√

2
attains stable and most satisfying performances than

other directions.
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Fig. 3. Classification accuracies of QDDA using parallel and vertical components of QR of color images. (a) and (b) are the results of QDDA{•},p and
QDDA{•},v with N = 7, and (c) and (d) are corresponding results of N = 9.

C. Comparison Results with Other Methods

This experiment evaluates QDDA by comparing with two
related methods, namely QPCA and QLDA. The number of
training sample N is set to 4, 6, 8, and 10 respectively. The
decomposition direction is chosen as µ̇ = i+j+k√

3
for QDDA.

The corresponding results are given in Fig. 4. We can find that
QDDA{1,1,1},p performs worse than others methods in most
cases. In the situation of N = 4, QDDA{1,1,1},v and QPCA
obtain comparable results, and they keep about 10 percentages
higher than QLDA. When N increases to 6, QPCA and QLDA
outperform QDDA{1,1,1},v in some cases. For larger training
numbers (N = 8, 10), QLDA shows better performance than
QPCA. In these situations, QDDA{1,1,1},v obtains obvious
improvements comparing with QLDA.

V. CONCLUSION

This paper proposed QDDA as a novel quaternion based
discriminant analysis method for color face recognition. To
overcome the limitation of traditional methods, QDDA is
based on QR of color images such that all channels of the
color images are handled holisticly. Besides, a quaternion
decomposition operation is carried out in QDDA to extract
more discriminant information from the color pixels. Experi-
ments were carried out to evaluate QDDA, and encouraging

results have been achieved. Future works include the adaptive
selection of decomposition direction for each color image,
considering more relations between training samples, and
performing other transformations to QR of color image, etc.
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